3.917 \(\int \frac{(A+B x) \sqrt{a+b x+c x^2}}{x^3} \, dx\)

Optimal. Leaf size=133 \[ \frac{\left (-4 a A c-4 a b B+A b^2\right ) \tanh ^{-1}\left (\frac{2 a+b x}{2 \sqrt{a} \sqrt{a+b x+c x^2}}\right )}{8 a^{3/2}}-\frac{\sqrt{a+b x+c x^2} (x (4 a B+A b)+2 a A)}{4 a x^2}+B \sqrt{c} \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+b x+c x^2}}\right ) \]

[Out]

-((2*a*A + (A*b + 4*a*B)*x)*Sqrt[a + b*x + c*x^2])/(4*a*x^2) + ((A*b^2 - 4*a*b*B - 4*a*A*c)*ArcTanh[(2*a + b*x
)/(2*Sqrt[a]*Sqrt[a + b*x + c*x^2])])/(8*a^(3/2)) + B*Sqrt[c]*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*
x^2])]

________________________________________________________________________________________

Rubi [A]  time = 0.101936, antiderivative size = 133, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {810, 843, 621, 206, 724} \[ \frac{\left (-4 a A c-4 a b B+A b^2\right ) \tanh ^{-1}\left (\frac{2 a+b x}{2 \sqrt{a} \sqrt{a+b x+c x^2}}\right )}{8 a^{3/2}}-\frac{\sqrt{a+b x+c x^2} (x (4 a B+A b)+2 a A)}{4 a x^2}+B \sqrt{c} \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+b x+c x^2}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[((A + B*x)*Sqrt[a + b*x + c*x^2])/x^3,x]

[Out]

-((2*a*A + (A*b + 4*a*B)*x)*Sqrt[a + b*x + c*x^2])/(4*a*x^2) + ((A*b^2 - 4*a*b*B - 4*a*A*c)*ArcTanh[(2*a + b*x
)/(2*Sqrt[a]*Sqrt[a + b*x + c*x^2])])/(8*a^(3/2)) + B*Sqrt[c]*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*
x^2])]

Rule 810

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Si
mp[((d + e*x)^(m + 1)*(a + b*x + c*x^2)^p*((d*g - e*f*(m + 2))*(c*d^2 - b*d*e + a*e^2) - d*p*(2*c*d - b*e)*(e*
f - d*g) - e*(g*(m + 1)*(c*d^2 - b*d*e + a*e^2) + p*(2*c*d - b*e)*(e*f - d*g))*x))/(e^2*(m + 1)*(m + 2)*(c*d^2
 - b*d*e + a*e^2)), x] - Dist[p/(e^2*(m + 1)*(m + 2)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 2)*(a + b*x
+ c*x^2)^(p - 1)*Simp[2*a*c*e*(e*f - d*g)*(m + 2) + b^2*e*(d*g*(p + 1) - e*f*(m + p + 2)) + b*(a*e^2*g*(m + 1)
 - c*d*(d*g*(2*p + 1) - e*f*(m + 2*p + 2))) - c*(2*c*d*(d*g*(2*p + 1) - e*f*(m + 2*p + 2)) - e*(2*a*e*g*(m + 1
) - b*(d*g*(m - 2*p) + e*f*(m + 2*p + 2))))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 - 4*a*
c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && GtQ[p, 0] && LtQ[m, -2] && LtQ[m + 2*p, 0] &&  !ILtQ[m + 2*p + 3, 0]

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{(A+B x) \sqrt{a+b x+c x^2}}{x^3} \, dx &=-\frac{(2 a A+(A b+4 a B) x) \sqrt{a+b x+c x^2}}{4 a x^2}-\frac{\int \frac{\frac{1}{2} \left (-4 a b B+A \left (b^2-4 a c\right )\right )-4 a B c x}{x \sqrt{a+b x+c x^2}} \, dx}{4 a}\\ &=-\frac{(2 a A+(A b+4 a B) x) \sqrt{a+b x+c x^2}}{4 a x^2}+(B c) \int \frac{1}{\sqrt{a+b x+c x^2}} \, dx-\frac{\left (-4 a b B+A \left (b^2-4 a c\right )\right ) \int \frac{1}{x \sqrt{a+b x+c x^2}} \, dx}{8 a}\\ &=-\frac{(2 a A+(A b+4 a B) x) \sqrt{a+b x+c x^2}}{4 a x^2}+(2 B c) \operatorname{Subst}\left (\int \frac{1}{4 c-x^2} \, dx,x,\frac{b+2 c x}{\sqrt{a+b x+c x^2}}\right )+\frac{\left (-4 a b B+A \left (b^2-4 a c\right )\right ) \operatorname{Subst}\left (\int \frac{1}{4 a-x^2} \, dx,x,\frac{2 a+b x}{\sqrt{a+b x+c x^2}}\right )}{4 a}\\ &=-\frac{(2 a A+(A b+4 a B) x) \sqrt{a+b x+c x^2}}{4 a x^2}-\frac{\left (4 a b B-A \left (b^2-4 a c\right )\right ) \tanh ^{-1}\left (\frac{2 a+b x}{2 \sqrt{a} \sqrt{a+b x+c x^2}}\right )}{8 a^{3/2}}+B \sqrt{c} \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+b x+c x^2}}\right )\\ \end{align*}

Mathematica [A]  time = 0.292048, size = 129, normalized size = 0.97 \[ \frac{\left (A \left (b^2-4 a c\right )-4 a b B\right ) \tanh ^{-1}\left (\frac{2 a+b x}{2 \sqrt{a} \sqrt{a+x (b+c x)}}\right )}{8 a^{3/2}}-\frac{\sqrt{a+x (b+c x)} (2 a (A+2 B x)+A b x)}{4 a x^2}+B \sqrt{c} \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+x (b+c x)}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[((A + B*x)*Sqrt[a + b*x + c*x^2])/x^3,x]

[Out]

-((A*b*x + 2*a*(A + 2*B*x))*Sqrt[a + x*(b + c*x)])/(4*a*x^2) + ((-4*a*b*B + A*(b^2 - 4*a*c))*ArcTanh[(2*a + b*
x)/(2*Sqrt[a]*Sqrt[a + x*(b + c*x)])])/(8*a^(3/2)) + B*Sqrt[c]*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + x*(b +
c*x)])]

________________________________________________________________________________________

Maple [B]  time = 0.01, size = 304, normalized size = 2.3 \begin{align*} -{\frac{A}{2\,a{x}^{2}} \left ( c{x}^{2}+bx+a \right ) ^{{\frac{3}{2}}}}+{\frac{Ab}{4\,{a}^{2}x} \left ( c{x}^{2}+bx+a \right ) ^{{\frac{3}{2}}}}-{\frac{A{b}^{2}}{4\,{a}^{2}}\sqrt{c{x}^{2}+bx+a}}+{\frac{A{b}^{2}}{8}\ln \left ({\frac{1}{x} \left ( 2\,a+bx+2\,\sqrt{a}\sqrt{c{x}^{2}+bx+a} \right ) } \right ){a}^{-{\frac{3}{2}}}}-{\frac{Abcx}{4\,{a}^{2}}\sqrt{c{x}^{2}+bx+a}}+{\frac{Ac}{2\,a}\sqrt{c{x}^{2}+bx+a}}-{\frac{Ac}{2}\ln \left ({\frac{1}{x} \left ( 2\,a+bx+2\,\sqrt{a}\sqrt{c{x}^{2}+bx+a} \right ) } \right ){\frac{1}{\sqrt{a}}}}-{\frac{B}{ax} \left ( c{x}^{2}+bx+a \right ) ^{{\frac{3}{2}}}}+{\frac{bB}{a}\sqrt{c{x}^{2}+bx+a}}-{\frac{bB}{2}\ln \left ({\frac{1}{x} \left ( 2\,a+bx+2\,\sqrt{a}\sqrt{c{x}^{2}+bx+a} \right ) } \right ){\frac{1}{\sqrt{a}}}}+{\frac{Bcx}{a}\sqrt{c{x}^{2}+bx+a}}+B\sqrt{c}\ln \left ({ \left ({\frac{b}{2}}+cx \right ){\frac{1}{\sqrt{c}}}}+\sqrt{c{x}^{2}+bx+a} \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x+A)*(c*x^2+b*x+a)^(1/2)/x^3,x)

[Out]

-1/2*A/a/x^2*(c*x^2+b*x+a)^(3/2)+1/4*A/a^2*b/x*(c*x^2+b*x+a)^(3/2)-1/4*A/a^2*b^2*(c*x^2+b*x+a)^(1/2)+1/8*A/a^(
3/2)*b^2*ln((2*a+b*x+2*a^(1/2)*(c*x^2+b*x+a)^(1/2))/x)-1/4*A/a^2*b*c*(c*x^2+b*x+a)^(1/2)*x+1/2*A/a*c*(c*x^2+b*
x+a)^(1/2)-1/2*A/a^(1/2)*c*ln((2*a+b*x+2*a^(1/2)*(c*x^2+b*x+a)^(1/2))/x)-B/a/x*(c*x^2+b*x+a)^(3/2)+B/a*b*(c*x^
2+b*x+a)^(1/2)-1/2*B/a^(1/2)*b*ln((2*a+b*x+2*a^(1/2)*(c*x^2+b*x+a)^(1/2))/x)+B/a*c*(c*x^2+b*x+a)^(1/2)*x+B*c^(
1/2)*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(c*x^2+b*x+a)^(1/2)/x^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 5.10937, size = 1675, normalized size = 12.59 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(c*x^2+b*x+a)^(1/2)/x^3,x, algorithm="fricas")

[Out]

[1/16*(8*B*a^2*sqrt(c)*x^2*log(-8*c^2*x^2 - 8*b*c*x - b^2 - 4*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(c) - 4*a*
c) + (4*B*a*b - A*b^2 + 4*A*a*c)*sqrt(a)*x^2*log(-(8*a*b*x + (b^2 + 4*a*c)*x^2 - 4*sqrt(c*x^2 + b*x + a)*(b*x
+ 2*a)*sqrt(a) + 8*a^2)/x^2) - 4*(2*A*a^2 + (4*B*a^2 + A*a*b)*x)*sqrt(c*x^2 + b*x + a))/(a^2*x^2), -1/16*(16*B
*a^2*sqrt(-c)*x^2*arctan(1/2*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(-c)/(c^2*x^2 + b*c*x + a*c)) - (4*B*a*b -
A*b^2 + 4*A*a*c)*sqrt(a)*x^2*log(-(8*a*b*x + (b^2 + 4*a*c)*x^2 - 4*sqrt(c*x^2 + b*x + a)*(b*x + 2*a)*sqrt(a) +
 8*a^2)/x^2) + 4*(2*A*a^2 + (4*B*a^2 + A*a*b)*x)*sqrt(c*x^2 + b*x + a))/(a^2*x^2), 1/8*(4*B*a^2*sqrt(c)*x^2*lo
g(-8*c^2*x^2 - 8*b*c*x - b^2 - 4*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(c) - 4*a*c) + (4*B*a*b - A*b^2 + 4*A*a
*c)*sqrt(-a)*x^2*arctan(1/2*sqrt(c*x^2 + b*x + a)*(b*x + 2*a)*sqrt(-a)/(a*c*x^2 + a*b*x + a^2)) - 2*(2*A*a^2 +
 (4*B*a^2 + A*a*b)*x)*sqrt(c*x^2 + b*x + a))/(a^2*x^2), -1/8*(8*B*a^2*sqrt(-c)*x^2*arctan(1/2*sqrt(c*x^2 + b*x
 + a)*(2*c*x + b)*sqrt(-c)/(c^2*x^2 + b*c*x + a*c)) - (4*B*a*b - A*b^2 + 4*A*a*c)*sqrt(-a)*x^2*arctan(1/2*sqrt
(c*x^2 + b*x + a)*(b*x + 2*a)*sqrt(-a)/(a*c*x^2 + a*b*x + a^2)) + 2*(2*A*a^2 + (4*B*a^2 + A*a*b)*x)*sqrt(c*x^2
 + b*x + a))/(a^2*x^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (A + B x\right ) \sqrt{a + b x + c x^{2}}}{x^{3}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(c*x**2+b*x+a)**(1/2)/x**3,x)

[Out]

Integral((A + B*x)*sqrt(a + b*x + c*x**2)/x**3, x)

________________________________________________________________________________________

Giac [B]  time = 1.46769, size = 485, normalized size = 3.65 \begin{align*} -B \sqrt{c} \log \left ({\left | -2 \,{\left (\sqrt{c} x - \sqrt{c x^{2} + b x + a}\right )} c - b \sqrt{c} \right |}\right ) + \frac{{\left (4 \, B a b - A b^{2} + 4 \, A a c\right )} \arctan \left (-\frac{\sqrt{c} x - \sqrt{c x^{2} + b x + a}}{\sqrt{-a}}\right )}{4 \, \sqrt{-a} a} + \frac{4 \,{\left (\sqrt{c} x - \sqrt{c x^{2} + b x + a}\right )}^{3} B a b +{\left (\sqrt{c} x - \sqrt{c x^{2} + b x + a}\right )}^{3} A b^{2} + 4 \,{\left (\sqrt{c} x - \sqrt{c x^{2} + b x + a}\right )}^{3} A a c + 8 \,{\left (\sqrt{c} x - \sqrt{c x^{2} + b x + a}\right )}^{2} B a^{2} \sqrt{c} + 8 \,{\left (\sqrt{c} x - \sqrt{c x^{2} + b x + a}\right )}^{2} A a b \sqrt{c} - 4 \,{\left (\sqrt{c} x - \sqrt{c x^{2} + b x + a}\right )} B a^{2} b +{\left (\sqrt{c} x - \sqrt{c x^{2} + b x + a}\right )} A a b^{2} + 4 \,{\left (\sqrt{c} x - \sqrt{c x^{2} + b x + a}\right )} A a^{2} c - 8 \, B a^{3} \sqrt{c}}{4 \,{\left ({\left (\sqrt{c} x - \sqrt{c x^{2} + b x + a}\right )}^{2} - a\right )}^{2} a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(c*x^2+b*x+a)^(1/2)/x^3,x, algorithm="giac")

[Out]

-B*sqrt(c)*log(abs(-2*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))*c - b*sqrt(c))) + 1/4*(4*B*a*b - A*b^2 + 4*A*a*c)*ar
ctan(-(sqrt(c)*x - sqrt(c*x^2 + b*x + a))/sqrt(-a))/(sqrt(-a)*a) + 1/4*(4*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))^
3*B*a*b + (sqrt(c)*x - sqrt(c*x^2 + b*x + a))^3*A*b^2 + 4*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))^3*A*a*c + 8*(sqr
t(c)*x - sqrt(c*x^2 + b*x + a))^2*B*a^2*sqrt(c) + 8*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))^2*A*a*b*sqrt(c) - 4*(s
qrt(c)*x - sqrt(c*x^2 + b*x + a))*B*a^2*b + (sqrt(c)*x - sqrt(c*x^2 + b*x + a))*A*a*b^2 + 4*(sqrt(c)*x - sqrt(
c*x^2 + b*x + a))*A*a^2*c - 8*B*a^3*sqrt(c))/(((sqrt(c)*x - sqrt(c*x^2 + b*x + a))^2 - a)^2*a)